Load CLIP Vision¶
Documentation¶
- Class name:
CLIPVisionLoader
- Category:
loaders
- Output node:
False
The CLIPVisionLoader node is designed for loading CLIP Vision models from specified paths. It abstracts the complexities of locating and initializing CLIP Vision models, making them readily available for further processing or inference tasks.
Input types¶
Required¶
clip_name
- Specifies the name of the CLIP Vision model to be loaded. This name is used to locate the model file within a predefined directory structure.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Output types¶
clip_vision
- Comfy dtype:
CLIP_VISION
- The loaded CLIP Vision model, ready for use in encoding images or performing other vision-related tasks.
- Python dtype:
torch.nn.Module
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes:
- IPAdapterApply
- IPAdapterApplyFaceID
- IPAdapter
- IPAdapterEncoder
- CLIPVisionEncode
- ToIPAdapterPipe //Inspire
- Reroute
- AV_IPAdapter
Source code¶
class CLIPVisionLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
}}
RETURN_TYPES = ("CLIP_VISION",)
FUNCTION = "load_clip"
CATEGORY = "loaders"
def load_clip(self, clip_name):
clip_path = folder_paths.get_full_path("clip_vision", clip_name)
clip_vision = comfy.clip_vision.load(clip_path)
return (clip_vision,)