Skip to content

ControlNetApplySD3

Documentation

  • Class name: ControlNetApplySD3
  • Category: _for_testing/sd3
  • Output node: False

The ControlNetApplySD3 node is designed for applying a control network to modify the generation of images based on positive and negative conditioning inputs. It leverages a control network, a VAE, and specific strength parameters to influence the image generation process, allowing for fine-tuned control over the output based on the provided conditioning.

Input types

Required

  • positive
    • Positive conditioning inputs that guide the image generation towards desired attributes or features.
    • Comfy dtype: CONDITIONING
    • Python dtype: tuple
  • negative
    • Negative conditioning inputs that guide the image generation away from certain attributes or features.
    • Comfy dtype: CONDITIONING
    • Python dtype: tuple
  • control_net
    • The control network used to apply specific modifications or influences on the image generation process.
    • Comfy dtype: CONTROL_NET
    • Python dtype: ControlNetType
  • vae
    • A variational autoencoder used for encoding and decoding images, contributing to the control network's ability to modify the image generation.
    • Comfy dtype: VAE
    • Python dtype: VAEType
  • image
    • The input image to be modified by the control network based on the conditioning.
    • Comfy dtype: IMAGE
    • Python dtype: torch.Tensor
  • strength
    • A parameter controlling the intensity of the control network's influence on the image generation.
    • Comfy dtype: FLOAT
    • Python dtype: float
  • start_percent
    • The starting percentage of the control effect applied to the image generation process.
    • Comfy dtype: FLOAT
    • Python dtype: float
  • end_percent
    • The ending percentage of the control effect applied to the image generation process.
    • Comfy dtype: FLOAT
    • Python dtype: float

Output types

  • positive
    • Comfy dtype: CONDITIONING
    • The modified positive conditioning after applying the control network.
    • Python dtype: tuple
  • negative
    • Comfy dtype: CONDITIONING
    • The modified negative conditioning after applying the control network.
    • Python dtype: tuple

Usage tips

  • Infra type: GPU
  • Common nodes: unknown

Source code

class ControlNetApplySD3(nodes.ControlNetApplyAdvanced):
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"positive": ("CONDITIONING", ),
                             "negative": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "vae": ("VAE", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
                             "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
                             }}
    CATEGORY = "_for_testing/sd3"