DualCFGGuider¶
Documentation¶
- Class name:
DualCFGGuider
- Category:
sampling/custom_sampling/guiders
- Output node:
False
The DualCFGGuider node is designed to enhance the sampling process by applying dual conditional guidance factors to a model. It allows for the specification of two distinct conditioning contexts and their respective guidance scales, enabling more nuanced control over the generation process.
Input types¶
Required¶
model
- The model parameter specifies the generative model to which the dual conditional guidance will be applied, serving as the foundation for the generation process.
- Comfy dtype:
MODEL
- Python dtype:
comfy.samplers.CFGGuider
cond1
- The cond1 parameter represents the first conditioning context, providing a specific direction or theme for the generation.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
cond2
- The cond2 parameter represents the second conditioning context, offering an additional layer of thematic guidance.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
negative
- The negative parameter specifies a conditioning context intended to guide the model away from certain themes or content.
- Comfy dtype:
CONDITIONING
- Python dtype:
str
cfg_conds
- The cfg_conds parameter sets the guidance scale for the first conditioning context, adjusting the influence it has on the generation.
- Comfy dtype:
FLOAT
- Python dtype:
float
cfg_cond2_negative
- The cfg_cond2_negative parameter sets the guidance scale for the combination of the second conditioning context and the negative context, fine-tuning their impact on the output.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
guider
- Comfy dtype:
GUIDER
- The output is a configured guider object, ready to influence the generative model's sampling process with dual conditional guidance.
- Python dtype:
Guider_DualCFG
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class DualCFGGuider:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"cond1": ("CONDITIONING", ),
"cond2": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"cfg_conds": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"cfg_cond2_negative": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
}
}
RETURN_TYPES = ("GUIDER",)
FUNCTION = "get_guider"
CATEGORY = "sampling/custom_sampling/guiders"
def get_guider(self, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative):
guider = Guider_DualCFG(model)
guider.set_conds(cond1, cond2, negative)
guider.set_cfg(cfg_conds, cfg_cond2_negative)
return (guider,)