EmptyImage¶
Documentation¶
- Class name:
EmptyImage
- Category:
image
- Output node:
False
The EmptyImage node is designed to generate blank images of specified dimensions and color. It allows for the creation of uniform color images that can serve as backgrounds or placeholders in various image processing tasks.
Input types¶
Required¶
width
- Specifies the width of the generated image. It determines how wide the image will be.
- Comfy dtype:
INT
- Python dtype:
int
height
- Determines the height of the generated image. It affects the vertical size of the image.
- Comfy dtype:
INT
- Python dtype:
int
batch_size
- Indicates the number of images to generate in a single batch. This allows for the creation of multiple images at once.
- Comfy dtype:
INT
- Python dtype:
int
color
- Defines the color of the generated image using a hexadecimal value, allowing for customization of the image's appearance. This parameter enables the selection of a wide range of colors.
- Comfy dtype:
INT
- Python dtype:
torch.Tensor
Output types¶
image
- Comfy dtype:
IMAGE
- The output is a tensor representing the generated image or images, with the specified dimensions and color.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class EmptyImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "generate"
CATEGORY = "image"
def generate(self, width, height, batch_size=1, color=0):
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
return (torch.cat((r, g, b), dim=-1), )