EmptySD3LatentImage¶
Documentation¶
- Class name:
EmptySD3LatentImage
- Category:
latent/sd3
- Output node:
False
This node is designed to generate a blank latent image with a specific shape and initial value for use in SD3 models. It primarily serves as a starting point for further processing or manipulation within the SD3 framework.
Input types¶
Required¶
width
- Specifies the width of the latent image to be generated. It determines the horizontal dimension of the output latent tensor.
- Comfy dtype:
INT
- Python dtype:
int
height
- Specifies the height of the latent image to be generated. It affects the vertical dimension of the output latent tensor.
- Comfy dtype:
INT
- Python dtype:
int
batch_size
- Determines the number of latent images to generate in a single batch. This allows for the creation of multiple latent images simultaneously.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
latent
- Comfy dtype:
LATENT
- The output is a latent representation in the form of a tensor, initialized with a specific value, ready for further processing in the SD3 pipeline.
- Python dtype:
Tuple[Dict[str, torch.Tensor]]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class EmptySD3LatentImage:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/sd3"
def generate(self, width, height, batch_size=1):
latent = torch.ones([batch_size, 16, height // 8, width // 8], device=self.device) * 0.0609
return ({"samples":latent}, )