ExponentialScheduler¶
Documentation¶
- Class name:
ExponentialScheduler
- Category:
sampling/custom_sampling/schedulers
- Output node:
False
The ExponentialScheduler node is designed to generate a sequence of sigma values following an exponential schedule for diffusion processes. It calculates these values based on the number of steps and the specified minimum and maximum sigma values, providing a foundational mechanism for controlling the noise level across the diffusion steps.
Input types¶
Required¶
steps
- Specifies the total number of steps for the diffusion process, directly influencing the length of the generated sigma sequence.
- Comfy dtype:
INT
- Python dtype:
int
sigma_max
- Defines the maximum sigma value, setting the upper limit of noise to be introduced at the beginning of the diffusion process.
- Comfy dtype:
FLOAT
- Python dtype:
float
sigma_min
- Determines the minimum sigma value, establishing the lower noise limit towards the end of the diffusion process.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
sigmas
- Comfy dtype:
SIGMAS
- A sequence of sigma values calculated based on an exponential schedule, used to control the noise level in each step of the diffusion process.
- Python dtype:
Tuple[float]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ExponentialScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def get_sigmas(self, steps, sigma_max, sigma_min):
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
return (sigmas, )