FreeU_V2¶
Documentation¶
- Class name:
FreeU_V2
- Category:
model_patches
- Output node:
False
The FreeU_V2 node enhances the functionality of generative models by applying dynamic scaling and filtering techniques to the model's output. It utilizes a scale dictionary to adjust the model's hidden states based on predefined scaling factors and applies a Fourier filter to the spatial components, ensuring optimized output quality. This node is particularly useful for improving the visual fidelity of generated images or patterns, making it a valuable tool for tasks requiring high-quality visual outputs.
Input types¶
Required¶
model
- The generative model to be enhanced by the FreeU_V2 node. It is crucial for defining the base functionality that will be augmented by the node's scaling and filtering operations.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
b1
- A scaling factor for adjusting the model's hidden states, contributing to the dynamic scaling functionality of the node.
- Comfy dtype:
FLOAT
- Python dtype:
float
b2
- Another scaling factor for adjusting the model's hidden states, working alongside b1 to fine-tune the output quality.
- Comfy dtype:
FLOAT
- Python dtype:
float
s1
- A scaling parameter used in the Fourier filtering process to modify the spatial components of the model's output, enhancing visual clarity.
- Comfy dtype:
FLOAT
- Python dtype:
float
s2
- A secondary scaling parameter for the Fourier filter, used to further refine the spatial aspects of the generated output.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
model
- Comfy dtype:
MODEL
- The enhanced generative model, with improved output quality through dynamic scaling and Fourier filtering.
- Python dtype:
torch.nn.Module
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class FreeU_V2:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"b1": ("FLOAT", {"default": 1.3, "min": 0.0, "max": 10.0, "step": 0.01}),
"b2": ("FLOAT", {"default": 1.4, "min": 0.0, "max": 10.0, "step": 0.01}),
"s1": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 10.0, "step": 0.01}),
"s2": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches"
def patch(self, model, b1, b2, s1, s2):
model_channels = model.model.model_config.unet_config["model_channels"]
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
on_cpu_devices = {}
def output_block_patch(h, hsp, transformer_options):
scale = scale_dict.get(int(h.shape[1]), None)
if scale is not None:
hidden_mean = h.mean(1).unsqueeze(1)
B = hidden_mean.shape[0]
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1)
if hsp.device not in on_cpu_devices:
try:
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
except:
logging.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device))
on_cpu_devices[hsp.device] = True
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
else:
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
return h, hsp
m = model.clone()
m.set_model_output_block_patch(output_block_patch)
return (m, )