ImageColorToMask¶
Documentation¶
- Class name:
ImageColorToMask
- Category:
mask
- Output node:
False
The ImageColorToMask node is designed to convert a specified color in an image to a mask. It processes an image and a target color, generating a mask where the specified color is highlighted, facilitating operations like color-based segmentation or object isolation.
Input types¶
Required¶
image
- The 'image' parameter represents the input image to be processed. It is crucial for determining the areas of the image that match the specified color to be converted into a mask.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
color
- The 'color' parameter specifies the target color in the image to be converted into a mask. It plays a key role in identifying the specific color areas to be highlighted in the resulting mask.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
mask
- Comfy dtype:
MASK
- The output is a mask highlighting the areas of the input image that match the specified color. This mask can be used for further image processing tasks, such as segmentation or object isolation.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ImageColorToMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
}
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "image_to_mask"
def image_to_mask(self, image, color):
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2]
mask = torch.where(temp == color, 255, 0).float()
return (mask,)