ImageCrop¶
Documentation¶
- Class name:
ImageCrop
- Category:
image/transform
- Output node:
False
The ImageCrop node is designed for cropping images to a specified width and height starting from a given x and y coordinate. This functionality is essential for focusing on specific regions of an image or for adjusting the image size to meet certain requirements.
Input types¶
Required¶
image
- The input image to be cropped. This parameter is crucial as it defines the source image from which a region will be extracted based on the specified dimensions and coordinates.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
width
- Specifies the width of the cropped image. This parameter determines how wide the resulting cropped image will be.
- Comfy dtype:
INT
- Python dtype:
int
height
- Specifies the height of the cropped image. This parameter determines the height of the resulting cropped image.
- Comfy dtype:
INT
- Python dtype:
int
x
- The x-coordinate of the top-left corner of the cropping area. This parameter sets the starting point for the width dimension of the crop.
- Comfy dtype:
INT
- Python dtype:
int
y
- The y-coordinate of the top-left corner of the cropping area. This parameter sets the starting point for the height dimension of the crop.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The cropped image as a result of the cropping operation. This output is significant for further processing or analysis of the specified image region.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class ImageCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop"
CATEGORY = "image/transform"
def crop(self, image, width, height, x, y):
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
to_y = height + y
img = image[:,y:to_y, x:to_x, :]
return (img,)