ImageFromBatch¶
Documentation¶
- Class name:
ImageFromBatch
- Category:
image/batch
- Output node:
False
The ImageFromBatch node is designed to extract a specific segment of images from a larger batch based on a given index and length. This functionality is crucial for operations that require processing or analyzing subsets of images within a batch, enabling targeted manipulation or inspection of images.
Input types¶
Required¶
image
- The 'image' parameter represents the batch of images from which a subset will be extracted. It is crucial for specifying the source batch.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
batch_index
- The 'batch_index' parameter specifies the starting index within the batch from which the extraction begins, allowing for precise selection of the subset.
- Comfy dtype:
INT
- Python dtype:
int
length
- The 'length' parameter determines the number of images to extract from the specified starting index, enabling control over the size of the resulting subset.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The output is a subset of images extracted from the original batch, based on the specified 'batch_index' and 'length'.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ImageFromBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"batch_index": ("INT", {"default": 0, "min": 0, "max": 4095}),
"length": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "frombatch"
CATEGORY = "image/batch"
def frombatch(self, image, batch_index, length):
s_in = image
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s = s_in[batch_index:batch_index + length].clone()
return (s,)