Skip to content

Image Only Checkpoint Loader (img2vid model)

Documentation

  • Class name: ImageOnlyCheckpointLoader
  • Category: loaders/video_models
  • Output node: False

This node specializes in loading checkpoints specifically for image-based models within video generation workflows. It efficiently retrieves and configures the necessary components from a given checkpoint, focusing on image-related aspects of the model.

Input types

Required

  • ckpt_name
    • Specifies the name of the checkpoint to load. This parameter is crucial for identifying and retrieving the correct checkpoint file from a predefined list of available checkpoints.
    • Comfy dtype: COMBO[STRING]
    • Python dtype: str

Output types

  • model
    • Comfy dtype: MODEL
    • Returns the main model loaded from the checkpoint, configured for image processing within video generation contexts.
    • Python dtype: torch.nn.Module
  • clip_vision
    • Comfy dtype: CLIP_VISION
    • Provides the CLIP vision component extracted from the checkpoint, tailored for image understanding and feature extraction.
    • Python dtype: torch.nn.Module
  • vae
    • Comfy dtype: VAE
    • Delivers the Variational Autoencoder (VAE) component, essential for image manipulation and generation tasks.
    • Python dtype: torch.nn.Module

Usage tips

Source code

class ImageOnlyCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE")
    FUNCTION = "load_checkpoint"

    CATEGORY = "loaders/video_models"

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return (out[0], out[3], out[2])