ImageOnlyCheckpointSave¶
Documentation¶
- Class name:
ImageOnlyCheckpointSave
- Category:
_for_testing
- Output node:
True
This node specializes in saving model checkpoints specifically for image-based applications, incorporating additional components like CLIP vision and VAE models. It allows for the customization of the checkpoint's filename prefix and optionally includes prompt and extra PNG information for enhanced flexibility and metadata storage.
Input types¶
Required¶
model
- The primary model whose state is to be saved as a checkpoint. It is central to the checkpoint creation process.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
clip_vision
- The CLIP vision model to be included in the checkpoint, enabling enhanced image understanding capabilities.
- Comfy dtype:
CLIP_VISION
- Python dtype:
torch.nn.Module
vae
- The VAE model to be included in the checkpoint, facilitating image generation or manipulation tasks.
- Comfy dtype:
VAE
- Python dtype:
torch.nn.Module
filename_prefix
- A customizable prefix for the checkpoint filename, allowing for organized storage and easy identification.
- Comfy dtype:
STRING
- Python dtype:
str
Output types¶
The node doesn't have output types
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ImageOnlyCheckpointSave(comfy_extras.nodes_model_merging.CheckpointSave):
CATEGORY = "_for_testing"
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"clip_vision": ("CLIP_VISION",),
"vae": ("VAE",),
"filename_prefix": ("STRING", {"default": "checkpoints/ComfyUI"}),},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
def save(self, model, clip_vision, vae, filename_prefix, prompt=None, extra_pnginfo=None):
comfy_extras.nodes_model_merging.save_checkpoint(model, clip_vision=clip_vision, vae=vae, filename_prefix=filename_prefix, output_dir=self.output_dir, prompt=prompt, extra_pnginfo=extra_pnginfo)
return {}