InstructPixToPixConditioning¶
Documentation¶
- Class name:
InstructPixToPixConditioning
- Category:
conditioning/instructpix2pix
- Output node:
False
This node is designed for encoding images into a conditioning format suitable for the InstructPix2Pix model, incorporating both positive and negative conditioning alongside pixel data and a variational autoencoder (VAE).
Input types¶
Required¶
positive
- Positive conditioning data that influences the encoding process towards desired outcomes.
- Comfy dtype:
CONDITIONING
- Python dtype:
Tuple[CONDITIONING]
negative
- Negative conditioning data that guides the encoding away from undesired outcomes.
- Comfy dtype:
CONDITIONING
- Python dtype:
Tuple[CONDITIONING]
vae
- A variational autoencoder used to encode the pixel data into a latent space representation.
- Comfy dtype:
VAE
- Python dtype:
VAE
pixels
- The pixel data of the image to be encoded, serving as the base for generating latent representations.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
Output types¶
positive
- Comfy dtype:
CONDITIONING
- Encoded positive conditioning data.
- Python dtype:
List[Tuple[CONDITIONING]]
- Comfy dtype:
negative
- Comfy dtype:
CONDITIONING
- Encoded negative conditioning data.
- Python dtype:
List[Tuple[CONDITIONING]]
- Comfy dtype:
latent
- Comfy dtype:
LATENT
- The latent space representation of the input image.
- Python dtype:
Dict[str, torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class InstructPixToPixConditioning:
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"vae": ("VAE", ),
"pixels": ("IMAGE", ),
}}
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "conditioning/instructpix2pix"
def encode(self, positive, negative, pixels, vae):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
concat_latent = vae.encode(pixels)
out_latent = {}
out_latent["samples"] = torch.zeros_like(concat_latent)
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
d["concat_latent_image"] = concat_latent
n = [t[0], d]
c.append(n)
out.append(c)
return (out[0], out[1], out_latent)