Latent Composite¶
Documentation¶
- Class name:
LatentComposite
- Category:
latent
- Output node:
False
The LatentComposite node is designed to blend or merge two latent representations into a single output. This process is essential for creating composite images or features by combining the characteristics of the input latents in a controlled manner.
Input types¶
Required¶
samples_to
- The 'samples_to' latent representation where the 'samples_from' will be composited onto. It serves as the base for the composite operation.
- Comfy dtype:
LATENT
- Python dtype:
Dict[str, torch.Tensor]
samples_from
- The 'samples_from' latent representation to be composited onto the 'samples_to'. It contributes its features or characteristics to the final composite output.
- Comfy dtype:
LATENT
- Python dtype:
Dict[str, torch.Tensor]
x
- The x-coordinate (horizontal position) where the 'samples_from' latent will be placed on the 'samples_to'. It determines the horizontal alignment of the composite.
- Comfy dtype:
INT
- Python dtype:
int
y
- The y-coordinate (vertical position) where the 'samples_from' latent will be placed on the 'samples_to'. It determines the vertical alignment of the composite.
- Comfy dtype:
INT
- Python dtype:
int
feather
- A boolean indicating whether the 'samples_from' latent should be resized to match the 'samples_to' before compositing. This can affect the scale and proportion of the composite result.
- Comfy dtype:
INT
- Python dtype:
bool
Output types¶
latent
- Comfy dtype:
LATENT
- The output is a composite latent representation, blending the features of both 'samples_to' and 'samples_from' latents based on the specified coordinates and resizing option.
- Python dtype:
Dict[str, torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class LatentComposite:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples_to": ("LATENT",),
"samples_from": ("LATENT",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "composite"
CATEGORY = "latent"
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
x = x // 8
y = y // 8
feather = feather // 8
samples_out = samples_to.copy()
s = samples_to["samples"].clone()
samples_to = samples_to["samples"]
samples_from = samples_from["samples"]
if feather == 0:
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
else:
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
mask = torch.ones_like(samples_from)
for t in range(feather):
if y != 0:
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
if y + samples_from.shape[2] < samples_to.shape[2]:
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
if x != 0:
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
if x + samples_from.shape[3] < samples_to.shape[3]:
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
rev_mask = torch.ones_like(mask) - mask
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
samples_out["samples"] = s
return (samples_out,)