LatentMultiply¶
Documentation¶
- Class name:
LatentMultiply
- Category:
latent/advanced
- Output node:
False
The LatentMultiply node is designed to scale the latent representation of samples by a specified multiplier. This operation allows for the adjustment of the intensity or magnitude of features within the latent space, enabling fine-tuning of generated content or the exploration of variations within a given latent direction.
Input types¶
Required¶
samples
- The 'samples' parameter represents the latent representations to be scaled. It is crucial for defining the input data on which the multiplication operation will be performed.
- Comfy dtype:
LATENT
- Python dtype:
Dict[str, torch.Tensor]
multiplier
- The 'multiplier' parameter specifies the scaling factor to be applied to the latent samples. It plays a key role in adjusting the magnitude of the latent features, allowing for nuanced control over the generated output.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
latent
- Comfy dtype:
LATENT
- The output is a modified version of the input latent samples, scaled by the specified multiplier. This allows for the exploration of variations within the latent space by adjusting the intensity of its features.
- Python dtype:
Tuple[Dict[str, torch.Tensor]]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class LatentMultiply:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples, multiplier):
samples_out = samples.copy()
s1 = samples["samples"]
samples_out["samples"] = s1 * multiplier
return (samples_out,)