Load LoRA¶
Documentation¶
- Class name:
LoraLoader
- Category:
loaders
- Output node:
False
The LoraLoader node is designed to dynamically load and apply LoRA (Low-Rank Adaptation) adjustments to models and CLIP instances based on specified parameters. It facilitates the customization of model behavior and performance without altering the original model architecture, enabling fine-tuned control over model and CLIP instance characteristics through LoRA parameters.
Input types¶
Required¶
model
- The model to which LoRA adjustments will be applied. It is crucial for defining the base model that will be modified.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
clip
- The CLIP instance to which LoRA adjustments will be applied. This parameter allows for the modification of CLIP instances alongside models.
- Comfy dtype:
CLIP
- Python dtype:
torch.nn.Module
lora_name
- The name of the LoRA file to be loaded. This determines which LoRA adjustments are applied to the model and CLIP instance.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
strength_model
- Defines the strength of LoRA adjustments applied to the model. This parameter allows for fine-tuning the impact of LoRA on the model.
- Comfy dtype:
FLOAT
- Python dtype:
float
strength_clip
- Defines the strength of LoRA adjustments applied to the CLIP instance. This parameter allows for adjusting the influence of LoRA on the CLIP instance.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
model
- Comfy dtype:
MODEL
- The modified model with LoRA adjustments applied.
- Python dtype:
torch.nn.Module
- Comfy dtype:
clip
- Comfy dtype:
CLIP
- The modified CLIP instance with LoRA adjustments applied.
- Python dtype:
torch.nn.Module
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
- LoraLoader
- CLIPTextEncode
- Reroute
- VideoLinearCFGGuidance
- KSampler
- FaceDetailer
- ModelSamplingDiscrete
- ADE_AnimateDiffLoaderWithContext
- KSampler //Inspire
- ToBasicPipe
Source code¶
class LoraLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"clip": ("CLIP", ),
"lora_name": (folder_paths.get_filename_list("loras"), ),
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL", "CLIP")
FUNCTION = "load_lora"
CATEGORY = "loaders"
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
if strength_model == 0 and strength_clip == 0:
return (model, clip)
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora)