ModelSamplingSD3¶
Documentation¶
- Class name:
ModelSamplingSD3
- Category:
advanced/model
- Output node:
False
This node introduces an advanced model sampling technique by applying a discrete flow-based modification to the input model. It enhances the model's sampling capabilities by integrating a shift parameter, allowing for refined control over the sampling process.
Input types¶
Required¶
model
- The model to which the sampling technique will be applied. It serves as the foundation for the advanced sampling modifications.
- Comfy dtype:
MODEL
- Python dtype:
comfy.model_sampling.Model
shift
- A parameter that adjusts the intensity of the sampling modification, offering a means to fine-tune the model's sampling behavior.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
model
- Comfy dtype:
MODEL
- The modified model with enhanced sampling capabilities, incorporating the discrete flow-based adjustments.
- Python dtype:
comfy.model_sampling.Model
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ModelSamplingSD3:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"shift": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step":0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, shift):
m = model.clone()
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
sampling_type = comfy.model_sampling.CONST
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift=shift)
m.add_object_patch("model_sampling", model_sampling)
return (m, )