PolyexponentialScheduler¶
Documentation¶
- Class name:
PolyexponentialScheduler
- Category:
sampling/custom_sampling/schedulers
- Output node:
False
The PolyexponentialScheduler node is designed to generate a sequence of sigma values based on a polyexponential function. These sigma values are used to control the noise level at each step of a diffusion process, allowing for fine-tuned adjustments to the sampling behavior.
Input types¶
Required¶
steps
- Specifies the number of steps for which sigma values are to be generated, affecting the granularity of the diffusion process.
- Comfy dtype:
INT
- Python dtype:
int
sigma_max
- The maximum sigma value, setting the upper limit of noise to be introduced in the early stages of the diffusion process.
- Comfy dtype:
FLOAT
- Python dtype:
float
sigma_min
- The minimum sigma value, determining the lower limit of noise for the final stages, ensuring the process gradually refines the generated output.
- Comfy dtype:
FLOAT
- Python dtype:
float
rho
- A parameter influencing the shape of the polyexponential curve, thereby affecting the distribution of sigma values across the steps.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
sigmas
- Comfy dtype:
SIGMAS
- A sequence of sigma values calculated based on the polyexponential function, tailored for each step of the diffusion process.
- Python dtype:
tuple
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class PolyexponentialScheduler:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"sigma_max": ("FLOAT", {"default": 14.614642, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
"sigma_min": ("FLOAT", {"default": 0.0291675, "min": 0.0, "max": 5000.0, "step":0.01, "round": False}),
"rho": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
}
}
RETURN_TYPES = ("SIGMAS",)
CATEGORY = "sampling/custom_sampling/schedulers"
FUNCTION = "get_sigmas"
def get_sigmas(self, steps, sigma_max, sigma_min, rho):
sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
return (sigmas, )