RepeatImageBatch¶
Documentation¶
- Class name:
RepeatImageBatch
- Category:
image/batch
- Output node:
False
The RepeatImageBatch node is designed to duplicate a given image a specified number of times, creating a batch of identical images. This functionality is essential for operations that require multiple instances of the same image for batch processing or augmentation purposes.
Input types¶
Required¶
image
- The 'image' parameter represents the image to be duplicated. It is crucial for determining the content of the output batch.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
amount
- The 'amount' parameter specifies the number of times the input image should be repeated. It directly influences the size of the output batch.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The output is a batch of images, each identical to the input image, repeated the specified number of times.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class RepeatImageBatch:
@classmethod
def INPUT_TYPES(s):
return {"required": { "image": ("IMAGE",),
"amount": ("INT", {"default": 1, "min": 1, "max": 4096}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "repeat"
CATEGORY = "image/batch"
def repeat(self, image, amount):
s = image.repeat((amount, 1,1,1))
return (s,)