SamplerDPMPP_2M_SDE¶
Documentation¶
- Class name:
SamplerDPMPP_2M_SDE
- Category:
sampling/custom_sampling/samplers
- Output node:
False
This node is designed to generate a sampler for the DPMPP_2M_SDE model, allowing for the creation of samples based on specified solver types, noise levels, and computational device preferences. It abstracts the complexities of sampler configuration, providing a streamlined interface for generating samples with customized settings.
Input types¶
Required¶
solver_type
- Specifies the solver type to be used in the sampling process, offering options between 'midpoint' and 'heun'. This choice influences the numerical integration method applied during sampling.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
List[str]
eta
- Determines the step size in the numerical integration, affecting the granularity of the sampling process. A higher value indicates a larger step size.
- Comfy dtype:
FLOAT
- Python dtype:
float
s_noise
- Controls the level of noise introduced during the sampling process, influencing the variability of the generated samples.
- Comfy dtype:
FLOAT
- Python dtype:
float
noise_device
- Indicates the computational device ('gpu' or 'cpu') on which the noise generation process is executed, affecting performance and efficiency.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
List[str]
Output types¶
sampler
- Comfy dtype:
SAMPLER
- The output is a sampler configured according to the specified parameters, ready for generating samples.
- Python dtype:
comfy.samplers.ksampler
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class SamplerDPMPP_2M_SDE:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"solver_type": (['midpoint', 'heun'], ),
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
"noise_device": (['gpu', 'cpu'], ),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, solver_type, eta, s_noise, noise_device):
if noise_device == 'cpu':
sampler_name = "dpmpp_2m_sde"
else:
sampler_name = "dpmpp_2m_sde_gpu"
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
return (sampler, )