SamplerDPMPP_3M_SDE¶
Documentation¶
- Class name:
SamplerDPMPP_3M_SDE
- Category:
sampling/custom_sampling/samplers
- Output node:
False
This node provides a method to obtain a sampler specifically designed for DPM-Solver++(3M) SDE models, allowing for the generation of samples based on specified noise levels and device preferences.
Input types¶
Required¶
eta
- Defines the scale of the noise to be applied during the sampling process, influencing the diversity and quality of generated samples.
- Comfy dtype:
FLOAT
- Python dtype:
float
s_noise
- Specifies the noise scale used in the sampling process, affecting the variance of the generated samples.
- Comfy dtype:
FLOAT
- Python dtype:
float
noise_device
- Determines whether the sampling computations are performed on a CPU or GPU, impacting performance and efficiency.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Output types¶
sampler
- Comfy dtype:
SAMPLER
- Produces a sampler configured for DPM-Solver++(3M) SDE models, ready to generate samples based on the provided noise parameters.
- Python dtype:
comfy.samplers.ksampler
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class SamplerDPMPP_3M_SDE:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01, "round": False}),
"noise_device": (['gpu', 'cpu'], ),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, eta, s_noise, noise_device):
if noise_device == 'cpu':
sampler_name = "dpmpp_3m_sde"
else:
sampler_name = "dpmpp_3m_sde_gpu"
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise})
return (sampler, )