SamplerEulerAncestralCFG++¶
Documentation¶
- Class name:
SamplerEulerAncestralCFGPP
- Category:
sampling/custom_sampling/samplers
- Output node:
False
This node provides a mechanism to generate a custom sampler based on the Euler Ancestral method with specific configurations for the CFG++ algorithm. It allows for fine-tuning the sampling process by adjusting parameters related to the noise and step size, catering to specialized needs in generating samples.
Input types¶
Required¶
eta
- Specifies the step size for the Euler Ancestral CFG++ sampler, affecting the granularity of the sampling steps and the overall smoothness of the generated samples.
- Comfy dtype:
FLOAT
- Python dtype:
float
s_noise
- Determines the scale of noise to be added during the sampling process, influencing the diversity and variability of the generated samples.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
sampler
- Comfy dtype:
SAMPLER
- Produces a customized sampler configured for the Euler Ancestral CFG++ method, tailored for specific sampling requirements.
- Python dtype:
comfy.samplers.KSampler
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class SamplerEulerAncestralCFGPP:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"eta": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": False}),
"s_noise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step":0.01, "round": False}),
}}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, eta, s_noise):
sampler = comfy.samplers.ksampler(
"euler_ancestral_cfg_pp",
{"eta": eta, "s_noise": s_noise})
return (sampler, )