SamplerLCMUpscale¶
Documentation¶
- Class name:
SamplerLCMUpscale
- Category:
sampling/custom_sampling/samplers
- Output node:
False
The SamplerLCMUpscale node is designed to upscale images using various methods, providing a flexible approach to image sampling with adjustable scale ratios and steps. It leverages a custom sampling function to enhance image resolution, catering to different upscale needs and preferences.
Input types¶
Required¶
scale_ratio
- Specifies the ratio by which the image should be upscaled. A higher value results in a larger image.
- Comfy dtype:
FLOAT
- Python dtype:
float
scale_steps
- Determines the number of steps to perform the upscale process. A value of -1 indicates automatic determination based on the scale ratio.
- Comfy dtype:
INT
- Python dtype:
int
upscale_method
- Selects the method used for upscaling the image, offering various algorithms to suit different quality and performance requirements.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Output types¶
sampler
- Comfy dtype:
SAMPLER
- Produces a sampler configured to upscale images according to the specified parameters.
- Python dtype:
comfy.samplers.KSAMPLER
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class SamplerLCMUpscale:
upscale_methods = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"]
@classmethod
def INPUT_TYPES(s):
return {"required":
{"scale_ratio": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 20.0, "step": 0.01}),
"scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}),
"upscale_method": (s.upscale_methods,),
}
}
RETURN_TYPES = ("SAMPLER",)
CATEGORY = "sampling/custom_sampling/samplers"
FUNCTION = "get_sampler"
def get_sampler(self, scale_ratio, scale_steps, upscale_method):
if scale_steps < 0:
scale_steps = None
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
return (sampler, )