Save Image¶
Documentation¶
- Class name:
SaveImage
- Category:
image
- Output node:
True
The SaveImage node is designed for saving images to disk. It handles the process of converting image data from tensors to a suitable image format, applying optional metadata, and writing the images to specified locations with configurable compression levels.
Input types¶
Required¶
images
- The images to be saved. This parameter is crucial as it directly contains the image data that will be processed and saved to disk.
- Comfy dtype:
IMAGE
- Python dtype:
List[torch.Tensor]
filename_prefix
- A prefix for the filename under which the image will be saved. This allows for organized storage and easy retrieval of saved images.
- Comfy dtype:
STRING
- Python dtype:
str
Output types¶
ui
- Provides a user interface component displaying the saved images, including filenames and storage locations.
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class SaveImage:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
self.compress_level = 4
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_images"
OUTPUT_NODE = True
CATEGORY = "image"
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
results = list()
for (batch_number, image) in enumerate(images):
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return { "ui": { "images": results } }