Set Latent Noise Mask¶
Documentation¶
- Class name:
SetLatentNoiseMask
- Category:
latent/inpaint
- Output node:
False
This node is designed to apply a noise mask to a set of latent samples. It modifies the input samples by integrating a specified mask, thereby altering their noise characteristics.
Input types¶
Required¶
samples
- The latent samples to which the noise mask will be applied. This parameter is crucial for determining the base content that will be modified.
- Comfy dtype:
LATENT
- Python dtype:
Dict[str, torch.Tensor]
mask
- The mask to be applied to the latent samples. It defines the areas and intensity of noise alteration within the samples.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
Output types¶
latent
- Comfy dtype:
LATENT
- The modified latent samples with the applied noise mask.
- Python dtype:
Tuple[Dict[str, torch.Tensor]]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
- KSampler
- KSampler (Efficient)
- Mute / Bypass Repeater (rgthree)
Source code¶
class SetLatentNoiseMask:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"mask": ("MASK",),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "set_mask"
CATEGORY = "latent/inpaint"
def set_mask(self, samples, mask):
s = samples.copy()
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
return (s,)