SplitSigmas¶
Documentation¶
- Class name:
SplitSigmas
- Category:
sampling/custom_sampling/sigmas
- Output node:
False
The SplitSigmas
node is designed to partition a sequence of sigma values into two subsets based on a specified step index. This functionality is crucial for custom sampling strategies in generative models, where manipulating the noise levels can significantly impact the model's output quality and diversity.
Input types¶
Required¶
sigmas
- The sequence of sigma values to be split. This parameter is central to the node's operation as it determines the basis for the partitioning process.
- Comfy dtype:
SIGMAS
- Python dtype:
torch.Tensor
step
- The index at which the sigma sequence is split into two subsets. This parameter directly influences the composition of the resulting sigma subsets, affecting the sampling process.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
high_sigmas
- Comfy dtype:
SIGMAS
- The subset of sigma values before the specified step index, representing higher noise levels.
- Python dtype:
torch.Tensor
- Comfy dtype:
low_sigmas
- Comfy dtype:
SIGMAS
- The subset of sigma values from the specified step index onwards, representing lower noise levels.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes:
Source code¶
class SplitSigmas:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"sigmas": ("SIGMAS", ),
"step": ("INT", {"default": 0, "min": 0, "max": 10000}),
}
}
RETURN_TYPES = ("SIGMAS","SIGMAS")
RETURN_NAMES = ("high_sigmas", "low_sigmas")
CATEGORY = "sampling/custom_sampling/sigmas"
FUNCTION = "get_sigmas"
def get_sigmas(self, sigmas, step):
sigmas1 = sigmas[:step + 1]
sigmas2 = sigmas[step:]
return (sigmas1, sigmas2)