StableCascade_EmptyLatentImage¶
Documentation¶
- Class name:
StableCascade_EmptyLatentImage
- Category:
latent/stable_cascade
- Output node:
False
This node is designed to generate empty latent images with specified dimensions and compression settings. It primarily serves in the initialization or preparation stages of image generation processes, where creating a blank canvas or base for further modifications is required.
Input types¶
Required¶
width
- Specifies the width of the generated latent image. It influences the spatial dimensions of the output latent representation.
- Comfy dtype:
INT
- Python dtype:
int
height
- Determines the height of the generated latent image, affecting the vertical dimension of the output latent representation.
- Comfy dtype:
INT
- Python dtype:
int
compression
- Controls the compression level applied to the latent image dimensions, directly impacting the resolution and size of the output.
- Comfy dtype:
INT
- Python dtype:
int
batch_size
- Indicates the number of latent images to generate in a single batch, allowing for batch processing of multiple images.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
stage_c
- Comfy dtype:
LATENT
- Represents the 'C' stage latent output of the generation process, typically a lower-resolution base for further image refinement.
- Python dtype:
torch.Tensor
- Comfy dtype:
stage_b
- Comfy dtype:
LATENT
- Denotes the 'B' stage latent output, offering a slightly higher resolution latent base for subsequent image development stages.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class StableCascade_EmptyLatentImage:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": {
"width": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 1024, "min": 256, "max": nodes.MAX_RESOLUTION, "step": 8}),
"compression": ("INT", {"default": 42, "min": 4, "max": 128, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})
}}
RETURN_TYPES = ("LATENT", "LATENT")
RETURN_NAMES = ("stage_c", "stage_b")
FUNCTION = "generate"
CATEGORY = "latent/stable_cascade"
def generate(self, width, height, compression, batch_size=1):
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression])
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4])
return ({
"samples": c_latent,
}, {
"samples": b_latent,
})