ThresholdMask¶
Documentation¶
- Class name:
ThresholdMask
- Category:
mask
- Output node:
False
The ThresholdMask node is designed to convert an image into a binary mask based on a specified threshold value. It evaluates each pixel against the threshold and categorizes it accordingly, facilitating image segmentation or object detection tasks.
Input types¶
Required¶
mask
- The 'mask' parameter represents the input image to be thresholded. It is crucial for determining which pixels will be included in the output mask based on the threshold value.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
value
- The 'value' parameter sets the threshold for the conversion process. Pixels with values above this threshold will be considered part of the mask, influencing the binary segmentation outcome.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
mask
- Comfy dtype:
MASK
- The output is a binary mask where pixels above the threshold are marked, useful for segmentation or highlighting specific features in an image.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ThresholdMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "image_to_mask"
def image_to_mask(self, mask, value):
mask = (mask > value).float()
return (mask,)