AnimateDiff Loader [Legacy] 🎭🅐🅓①¶
Documentation¶
- Class name:
ADE_AnimateDiffLoaderWithContext
- Category:
Animate Diff 🎭🅐🅓/① Gen1 nodes ①
- Output node:
False
This node is designed to load the AnimateDiff model along with a specific context, facilitating the integration of additional information or settings that influence the animation process. It serves as a bridge between the legacy AnimateDiff model and newer, context-aware functionalities, ensuring compatibility and enhanced control over the animation generation.
Input types¶
Required¶
model
- Specifies the AnimateDiff model to be loaded, serving as the core component for the animation process.
- Comfy dtype:
MODEL
- Python dtype:
str
model_name
- Identifies the specific AnimateDiff model by name, allowing for precise selection within the available options.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
beta_schedule
- Adjusts the beta schedule for the animation, influencing the diffusion process.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Optional¶
context_options
- Provides context-specific options that modify how the AnimateDiff model processes animations, allowing for customized animation behaviors.
- Comfy dtype:
CONTEXT_OPTIONS
- Python dtype:
str
motion_lora
- Specifies the LoRA parameters for motion, enhancing the model's ability to generate dynamic animations.
- Comfy dtype:
MOTION_LORA
- Python dtype:
str
ad_settings
- Defines the settings for AnimateDiff, tailoring the animation process to specific requirements.
- Comfy dtype:
AD_SETTINGS
- Python dtype:
str
sample_settings
- Determines the sampling settings for the animation, affecting the quality and characteristics of the generated animation.
- Comfy dtype:
SAMPLE_SETTINGS
- Python dtype:
str
motion_scale
- Controls the scale of motion in the animation, allowing for finer adjustment of movement intensity.
- Comfy dtype:
FLOAT
- Python dtype:
str
apply_v2_models_properly
- Ensures that version 2 models are applied correctly, optimizing compatibility and performance.
- Comfy dtype:
BOOLEAN
- Python dtype:
str
ad_keyframes
- Specifies keyframes for the animation, guiding the AnimateDiff model in generating targeted animation sequences.
- Comfy dtype:
AD_KEYFRAMES
- Python dtype:
str
Output types¶
model
- Comfy dtype:
MODEL
- The loaded AnimateDiff model, ready for animation generation with the specified context and settings.
- Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes:
- KSampler
- FreeU_V2
- KSamplerAdvanced
- LoraLoaderModelOnly
- LoraLoader
- ToBasicPipe
- IPAdapterApply
- DynamicThresholdingSimple
- Reroute
Source code¶
class LegacyAnimateDiffLoaderWithContext:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"model_name": (get_available_motion_models(),),
"beta_schedule": (BetaSchedules.ALIAS_LIST, {"default": BetaSchedules.AUTOSELECT}),
#"apply_mm_groupnorm_hack": ("BOOLEAN", {"default": True}),
},
"optional": {
"context_options": ("CONTEXT_OPTIONS",),
"motion_lora": ("MOTION_LORA",),
"ad_settings": ("AD_SETTINGS",),
"sample_settings": ("SAMPLE_SETTINGS",),
"motion_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}),
"apply_v2_models_properly": ("BOOLEAN", {"default": True}),
"ad_keyframes": ("AD_KEYFRAMES",),
}
}
RETURN_TYPES = ("MODEL",)
CATEGORY = "Animate Diff 🎭🅐🅓/① Gen1 nodes ①"
FUNCTION = "load_mm_and_inject_params"
def load_mm_and_inject_params(self,
model: ModelPatcher,
model_name: str, beta_schedule: str,# apply_mm_groupnorm_hack: bool,
context_options: ContextOptionsGroup=None, motion_lora: MotionLoraList=None, ad_settings: AnimateDiffSettings=None, motion_model_settings: AnimateDiffSettings=None,
sample_settings: SampleSettings=None, motion_scale: float=1.0, apply_v2_models_properly: bool=False, ad_keyframes: ADKeyframeGroup=None,
):
if ad_settings is not None:
motion_model_settings = ad_settings
# load motion module
motion_model = load_motion_module_gen1(model_name, model, motion_lora=motion_lora, motion_model_settings=motion_model_settings)
# set injection params
params = InjectionParams(
unlimited_area_hack=False,
model_name=model_name,
apply_v2_properly=apply_v2_models_properly,
)
if context_options:
params.set_context(context_options)
# set motion_scale and motion_model_settings
if not motion_model_settings:
motion_model_settings = AnimateDiffSettings()
motion_model_settings.attn_scale = motion_scale
params.set_motion_model_settings(motion_model_settings)
if params.motion_model_settings.mask_attn_scale is not None:
motion_model.scale_multival = params.motion_model_settings.mask_attn_scale * params.motion_model_settings.attn_scale
else:
motion_model.scale_multival = params.motion_model_settings.attn_scale
motion_model.keyframes = ad_keyframes.clone() if ad_keyframes else ADKeyframeGroup()
model = ModelPatcherAndInjector.create_from(model, hooks_only=True)
model.motion_models = MotionModelGroup(motion_model)
model.sample_settings = sample_settings if sample_settings is not None else SampleSettings()
model.motion_injection_params = params
# save model sampling from BetaSchedule as object patch
# if autoselect, get suggested beta_schedule from motion model
if beta_schedule == BetaSchedules.AUTOSELECT and not model.motion_models.is_empty():
beta_schedule = model.motion_models[0].model.get_best_beta_schedule(log=True)
new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, model)
if new_model_sampling is not None:
model.add_object_patch("model_sampling", new_model_sampling)
del motion_model
return (model,)