Apply AnimateDiff Model (Adv.) 🎭🅐🅓②¶
Documentation¶
- Class name:
ADE_ApplyAnimateDiffModel
- Category:
Animate Diff 🎭🅐🅓/② Gen2 nodes ②
- Output node:
False
The ADE_ApplyAnimateDiffModel node is designed to apply advanced AnimateDiff model configurations to generate motion in images. It leverages a comprehensive set of parameters to fine-tune the animation process, accommodating a wide range of motion effects and styles.
Input types¶
Required¶
motion_model
- Specifies the motion model to be used for animation. It is crucial for defining the animation's behavior and characteristics.
- Comfy dtype:
MOTION_MODEL_ADE
- Python dtype:
MotionModelPatcher
start_percent
- Defines the starting percentage of the animation effect, marking the beginning of the motion's application.
- Comfy dtype:
FLOAT
- Python dtype:
float
end_percent
- Specifies the ending percentage of the animation effect, determining the point at which the motion ceases.
- Comfy dtype:
FLOAT
- Python dtype:
float
Optional¶
motion_lora
- Optional parameter that allows for the adjustment of motion using LoRA (Low-Rank Adaptation) techniques, enhancing the animation's quality.
- Comfy dtype:
MOTION_LORA
- Python dtype:
MotionLoraList
scale_multival
- Optional parameter that influences the scale of the animation effect, allowing for fine-tuning of the animation's intensity.
- Comfy dtype:
MULTIVAL
- Python dtype:
float
effect_multival
- Optional parameter that adjusts the overall effect of the animation, enabling customization of the visual outcome.
- Comfy dtype:
MULTIVAL
- Python dtype:
float
ad_keyframes
- Optional parameter that specifies keyframes for the animation, allowing for precise control over the motion's timing and sequence.
- Comfy dtype:
AD_KEYFRAMES
- Python dtype:
ADKeyframeGroup
prev_m_models
- Optional parameter that includes previous motion models to be considered in the current animation process, allowing for cumulative effects.
- Comfy dtype:
M_MODELS
- Python dtype:
M_MODELS
Output types¶
m_models
- Comfy dtype:
M_MODELS
- Outputs the motion models used in the animation process, encapsulating all adjustments and configurations made.
- Python dtype:
M_MODELS
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class ApplyAnimateDiffModelNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"motion_model": ("MOTION_MODEL_ADE",),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
},
"optional": {
"motion_lora": ("MOTION_LORA",),
"scale_multival": ("MULTIVAL",),
"effect_multival": ("MULTIVAL",),
"ad_keyframes": ("AD_KEYFRAMES",),
"prev_m_models": ("M_MODELS",),
}
}
RETURN_TYPES = ("M_MODELS",)
CATEGORY = "Animate Diff 🎭🅐🅓/② Gen2 nodes ②"
FUNCTION = "apply_motion_model"
def apply_motion_model(self, motion_model: MotionModelPatcher, start_percent: float=0.0, end_percent: float=1.0,
motion_lora: MotionLoraList=None, ad_keyframes: ADKeyframeGroup=None,
scale_multival=None, effect_multival=None,
prev_m_models: MotionModelGroup=None,):
# set up motion models list
if prev_m_models is None:
prev_m_models = MotionModelGroup()
prev_m_models = prev_m_models.clone()
motion_model = motion_model.clone()
# check if internal motion model already present in previous model - create new if so
for prev_model in prev_m_models.models:
if motion_model.model is prev_model.model:
# need to create new internal model based on same state_dict
motion_model = create_fresh_motion_module(motion_model)
# apply motion model to loaded_mm
if motion_lora is not None:
for lora in motion_lora.loras:
load_motion_lora_as_patches(motion_model, lora)
motion_model.scale_multival = scale_multival
motion_model.effect_multival = effect_multival
motion_model.keyframes = ad_keyframes.clone() if ad_keyframes else ADKeyframeGroup()
motion_model.timestep_percent_range = (start_percent, end_percent)
# add to beginning, so that after injection, it will be the earliest of prev_m_models to be run
prev_m_models.add_to_start(mm=motion_model)
return (prev_m_models,)