Empty Latent Image (Big Batch) 🎭🅐🅓¶
Documentation¶
- Class name:
ADE_EmptyLatentImageLarge
- Category:
Animate Diff 🎭🅐🅓/extras
- Output node:
False
The ADE_EmptyLatentImageLarge node is designed to initialize a large latent image tensor with zeros. This tensor serves as a blank canvas for further generative processes, allowing for the creation and manipulation of images at a latent level.
Input types¶
Required¶
width
- Specifies the width of the latent image to be generated. It determines the horizontal dimension of the resulting tensor.
- Comfy dtype:
INT
- Python dtype:
int
height
- Determines the height of the latent image. It affects the vertical dimension of the resulting tensor.
- Comfy dtype:
INT
- Python dtype:
int
batch_size
- Controls the number of latent images to generate in a single batch. It influences the first dimension of the resulting tensor, allowing for batch processing of multiple images.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
latent
- Comfy dtype:
LATENT
- The output is a tensor representing a batch of blank latent images. Each image is initialized with zeros, ready for subsequent generative modifications.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes:
Source code¶
class EmptyLatentImageLarge:
def __init__(self, device="cpu"):
self.device = device
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": comfy_nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 64, "max": comfy_nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 262144})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "Animate Diff 🎭🅐🅓/extras"
def generate(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return ({"samples":latent}, )