Noise Layer [Add Weighted] 🎭🅐🅓¶
Documentation¶
- Class name:
ADE_NoiseLayerAddWeighted
- Category:
Animate Diff 🎭🅐🅓/noise layers
- Output node:
False
The ADE_NoiseLayerAddWeighted node specializes in enhancing the noise layering process by applying a weighted addition of noise to an existing noise layer. It leverages a balance multiplier to fine-tune the impact of new noise on the existing noise structure, aiming to achieve a more controlled and nuanced noise integration.
Input types¶
Required¶
batch_offset
- Specifies the offset for batch processing, affecting how noise is applied across different batches.
- Comfy dtype:
INT
- Python dtype:
int
noise_type
- Defines the type of noise to be added, influencing the characteristics of the noise applied.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
seed_gen_override
- Allows for overriding the default seed generation mechanism, enabling custom noise generation patterns.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
seed_offset
- Determines the offset applied to the seed value, facilitating varied noise generation outcomes.
- Comfy dtype:
INT
- Python dtype:
int
noise_weight
- Controls the weight of the new noise being added, allowing for adjustment of the noise's influence on the existing layer.
- Comfy dtype:
FLOAT
- Python dtype:
float
balance_multiplier
- Adjusts the balance between the old and new noise, fine-tuning the overall effect of noise addition.
- Comfy dtype:
FLOAT
- Python dtype:
float
Optional¶
prev_noise_layers
- Represents the previous state of noise layers, enabling sequential layering of noise for complex effects.
- Comfy dtype:
NOISE_LAYERS
- Python dtype:
NoiseLayerGroup
mask_optional
- An optional mask that can be applied to selectively influence the noise addition process, providing further control over the noise characteristics.
- Comfy dtype:
MASK
- Python dtype:
Tensor
seed_override
- Provides an option to override the seed value used for noise generation, offering control over the randomness aspect.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
noise_layers
- Comfy dtype:
NOISE_LAYERS
- Outputs the updated noise layer group after the addition of the weighted noise layer, reflecting the new state of noise layering.
- Python dtype:
NoiseLayerGroup
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class NoiseLayerAddWeightedNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
"noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}),
"balance_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}),
},
"optional": {
"prev_noise_layers": ("NOISE_LAYERS",),
"mask_optional": ("MASK",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
}
}
RETURN_TYPES = ("NOISE_LAYERS",)
CATEGORY = "Animate Diff 🎭🅐🅓/noise layers"
FUNCTION = "create_layers"
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int,
noise_weight: float, balance_multiplier: float,
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,):
# prepare prev_noise_layers
if prev_noise_layers is None:
prev_noise_layers = NoiseLayerGroup()
prev_noise_layers = prev_noise_layers.clone()
# create layer
layer = NoiseLayerAddWeighted(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset,
seed_override=seed_override, mask=mask_optional,
noise_weight=noise_weight, balance_multiplier=balance_multiplier)
prev_noise_layers.add_to_start(layer)
return (prev_noise_layers,)