Skip to content

XY Inputs: Denoise //EasyUse

Documentation

  • Class name: easy XYInputs: Denoise
  • Category: EasyUse/XY Inputs
  • Output node: False

This node is designed to facilitate the exploration and visualization of denoising effects in generative models. It allows users to adjust denoising parameters over a batch of data, providing a graphical representation of the impact of different denoising levels on the generated outputs.

Input types

Required

  • batch_count
    • Specifies the number of batches to process, allowing for the examination of denoising effects across multiple sets of data.
    • Comfy dtype: INT
    • Python dtype: int
  • first_denoise
    • Sets the initial denoising level, marking the starting point for the exploration of denoising effects.
    • Comfy dtype: FLOAT
    • Python dtype: float
  • last_denoise
    • Defines the final denoising level, enabling users to observe how increasing or decreasing denoising intensity affects the output.
    • Comfy dtype: FLOAT
    • Python dtype: float

Output types

  • X or Y
    • Comfy dtype: X_Y
    • Provides a graphical representation of the denoising process, illustrating the effects of different denoising levels on the data.
    • Python dtype: Dict[str, Any]

Usage tips

  • Infra type: CPU
  • Common nodes: unknown

Source code

class XYplot_Denoise:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
                "first_denoise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1}),
                "last_denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1}),
            }
        }

    RETURN_TYPES = ("X_Y",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "EasyUse/XY Inputs"

    def xy_value(self, batch_count, first_denoise, last_denoise):
        axis = "advanced: Denoise"
        values = generate_floats(batch_count, first_denoise, last_denoise)
        return ({"axis": axis, "values": values},) if values else (None,)