DetailerFix¶
Documentation¶
- Class name:
easy detailerFix
- Category:
EasyUse/Fix
- Output node:
True
The 'easy detailerFix' node is designed for enhancing and refining images through a detailed fixing process. It operates by applying a series of adjustments and enhancements to the input image, aiming to improve its overall quality and appearance.
Input types¶
Required¶
pipe
- Specifies the pipeline configuration for the image enhancement process, indicating the sequence of operations to be applied.
- Comfy dtype:
PIPE_LINE
- Python dtype:
tuple
image_output
- Determines how the output image is handled, offering options such as hiding, previewing, saving, or sending the enhanced image.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
list[str]
link_id
- An identifier for linking the output with other processes or nodes, facilitating integration and further processing.
- Comfy dtype:
INT
- Python dtype:
int
save_prefix
- A prefix added to the filename of the saved image, allowing for organized storage and easy retrieval.
- Comfy dtype:
STRING
- Python dtype:
str
Optional¶
model
- The model used for the image enhancement, providing the capability to customize the fixing process based on different models.
- Comfy dtype:
MODEL
- Python dtype:
str
Output types¶
pipe
- Comfy dtype:
PIPE_LINE
- The updated pipeline configuration after the image enhancement process.
- Python dtype:
tuple
- Comfy dtype:
image
- Comfy dtype:
IMAGE
- The enhanced image resulting from the detailed fixing process.
- Python dtype:
str
- Comfy dtype:
cropped_refined
- Comfy dtype:
IMAGE
- A refined version of the cropped area from the original image, highlighting the improvements made.
- Python dtype:
list[str]
- Comfy dtype:
cropped_enhanced_alpha
- Comfy dtype:
IMAGE
- An enhanced version of the cropped area with alpha transparency, offering a detailed view of the adjustments.
- Python dtype:
list[str]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class detailerFix:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"pipe": ("PIPE_LINE",),
"image_output": (["Hide", "Preview", "Save", "Hide&Save", "Sender", "Sender&Save"],{"default": "Preview"}),
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}),
"save_prefix": ("STRING", {"default": "ComfyUI"}),
},
"optional": {
"model": ("MODEL",),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO", "my_unique_id": "UNIQUE_ID", }
}
RETURN_TYPES = ("PIPE_LINE", "IMAGE", "IMAGE", "IMAGE")
RETURN_NAMES = ("pipe", "image", "cropped_refined", "cropped_enhanced_alpha")
OUTPUT_NODE = True
OUTPUT_IS_LIST = (False, False, True, True)
FUNCTION = "doit"
CATEGORY = "EasyUse/Fix"
def doit(self, pipe, image_output, link_id, save_prefix, model=None, prompt=None, extra_pnginfo=None, my_unique_id=None):
# Clean loaded_objects
easyCache.update_loaded_objects(prompt)
my_unique_id = int(my_unique_id)
model = model or (pipe["model"] if "model" in pipe else None)
if model is None:
raise Exception(f"[ERROR] model or pipe['model'] is missing")
detail_fix_settings = pipe["detail_fix_settings"] if "detail_fix_settings" in pipe else None
if detail_fix_settings is None:
raise Exception(f"[ERROR] detail_fix_settings or pipe['detail_fix_settings'] is missing")
mask = pipe["mask"] if "mask" in pipe else None
image = pipe["images"]
clip = pipe["clip"]
vae = pipe["vae"]
seed = pipe["seed"]
positive = pipe["positive"]
negative = pipe["negative"]
loader_settings = pipe["loader_settings"] if "loader_settings" in pipe else {}
guide_size = pipe["detail_fix_settings"]["guide_size"] if "guide_size" in pipe["detail_fix_settings"] else 256
guide_size_for = pipe["detail_fix_settings"]["guide_size_for"] if "guide_size_for" in pipe[
"detail_fix_settings"] else True
max_size = pipe["detail_fix_settings"]["max_size"] if "max_size" in pipe["detail_fix_settings"] else 768
steps = pipe["detail_fix_settings"]["steps"] if "steps" in pipe["detail_fix_settings"] else 20
cfg = pipe["detail_fix_settings"]["cfg"] if "cfg" in pipe["detail_fix_settings"] else 1.0
sampler_name = pipe["detail_fix_settings"]["sampler_name"] if "sampler_name" in pipe[
"detail_fix_settings"] else None
scheduler = pipe["detail_fix_settings"]["scheduler"] if "scheduler" in pipe["detail_fix_settings"] else None
denoise = pipe["detail_fix_settings"]["denoise"] if "denoise" in pipe["detail_fix_settings"] else 0.5
feather = pipe["detail_fix_settings"]["feather"] if "feather" in pipe["detail_fix_settings"] else 5
crop_factor = pipe["detail_fix_settings"]["crop_factor"] if "crop_factor" in pipe["detail_fix_settings"] else 3.0
drop_size = pipe["detail_fix_settings"]["drop_size"] if "drop_size" in pipe["detail_fix_settings"] else 10
refiner_ratio = pipe["detail_fix_settings"]["refiner_ratio"] if "refiner_ratio" in pipe else 0.2
batch_size = pipe["detail_fix_settings"]["batch_size"] if "batch_size" in pipe["detail_fix_settings"] else 1
noise_mask = pipe["detail_fix_settings"]["noise_mask"] if "noise_mask" in pipe["detail_fix_settings"] else None
force_inpaint = pipe["detail_fix_settings"]["force_inpaint"] if "force_inpaint" in pipe["detail_fix_settings"] else False
wildcard = pipe["detail_fix_settings"]["wildcard"] if "wildcard" in pipe["detail_fix_settings"] else ""
cycle = pipe["detail_fix_settings"]["cycle"] if "cycle" in pipe["detail_fix_settings"] else 1
bbox_segm_pipe = pipe["bbox_segm_pipe"] if pipe and "bbox_segm_pipe" in pipe else None
sam_pipe = pipe["sam_pipe"] if "sam_pipe" in pipe else None
# 细节修复初始时间
start_time = int(time.time() * 1000)
if "mask_settings" in pipe:
mask_mode = pipe['mask_settings']["mask_mode"] if "inpaint_model" in pipe['mask_settings'] else True
inpaint_model = pipe['mask_settings']["inpaint_model"] if "inpaint_model" in pipe['mask_settings'] else False
noise_mask_feather = pipe['mask_settings']["noise_mask_feather"] if "noise_mask_feather" in pipe['mask_settings'] else 20
cls = ALL_NODE_CLASS_MAPPINGS["MaskDetailerPipe"]
if "MaskDetailerPipe" not in ALL_NODE_CLASS_MAPPINGS:
raise Exception(f"[ERROR] To use MaskDetailerPipe, you need to install 'Impact Pack'")
basic_pipe = (model, clip, vae, positive, negative)
result_img, result_cropped_enhanced, result_cropped_enhanced_alpha, basic_pipe, refiner_basic_pipe_opt = cls().doit(image, mask, basic_pipe, guide_size, guide_size_for, max_size, mask_mode,
seed, steps, cfg, sampler_name, scheduler, denoise,
feather, crop_factor, drop_size, refiner_ratio, batch_size, cycle=1,
refiner_basic_pipe_opt=None, detailer_hook=None, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather)
result_mask = mask
result_cnet_images = ()
else:
if bbox_segm_pipe is None:
raise Exception(f"[ERROR] bbox_segm_pipe or pipe['bbox_segm_pipe'] is missing")
if sam_pipe is None:
raise Exception(f"[ERROR] sam_pipe or pipe['sam_pipe'] is missing")
bbox_detector_opt, bbox_threshold, bbox_dilation, bbox_crop_factor, segm_detector_opt = bbox_segm_pipe
sam_model_opt, sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold, sam_mask_hint_use_negative = sam_pipe
if "FaceDetailer" not in ALL_NODE_CLASS_MAPPINGS:
raise Exception(f"[ERROR] To use FaceDetailer, you need to install 'Impact Pack'")
cls = ALL_NODE_CLASS_MAPPINGS["FaceDetailer"]
result_img, result_cropped_enhanced, result_cropped_enhanced_alpha, result_mask, pipe, result_cnet_images = cls().doit(
image, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name,
scheduler,
positive, negative, denoise, feather, noise_mask, force_inpaint,
bbox_threshold, bbox_dilation, bbox_crop_factor,
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold,
sam_mask_hint_use_negative, drop_size, bbox_detector_opt, wildcard, cycle, sam_model_opt,
segm_detector_opt,
detailer_hook=None)
# 细节修复结束时间
end_time = int(time.time() * 1000)
spent_time = 'Fix:' + str((end_time - start_time) / 1000) + '"'
results = easySave(result_img, save_prefix, image_output, prompt, extra_pnginfo)
sampler.update_value_by_id("results", my_unique_id, results)
# Clean loaded_objects
easyCache.update_loaded_objects(prompt)
new_pipe = {
"samples": None,
"images": result_img,
"model": model,
"clip": clip,
"vae": vae,
"seed": seed,
"positive": positive,
"negative": negative,
"wildcard": wildcard,
"bbox_segm_pipe": bbox_segm_pipe,
"sam_pipe": sam_pipe,
"loader_settings": {
**loader_settings,
"spent_time": spent_time
},
"detail_fix_settings": detail_fix_settings
}
if "mask_settings" in pipe:
new_pipe["mask_settings"] = pipe["mask_settings"]
sampler.update_value_by_id("pipe_line", my_unique_id, new_pipe)
del bbox_segm_pipe
del sam_pipe
del pipe
if image_output in ("Hide", "Hide&Save"):
return (new_pipe, result_img, result_cropped_enhanced, result_cropped_enhanced_alpha, result_mask, result_cnet_images)
if image_output in ("Sender", "Sender&Save"):
PromptServer.instance.send_sync("img-send", {"link_id": link_id, "images": results})
return {"ui": {"images": results}, "result": (new_pipe, result_img, result_cropped_enhanced, result_cropped_enhanced_alpha, result_mask, result_cnet_images )}