imageConcat¶
Documentation¶
- Class name:
easy imageConcat
- Category:
EasyUse/Image
- Output node:
False
The easy imageConcat
node is designed to concatenate two images either horizontally or vertically, with an option to match their sizes for seamless integration. This functionality is essential for tasks requiring the combination of images in a specific orientation, such as creating panoramic views or composite images.
Input types¶
Required¶
image1
- The first image to be concatenated. It serves as the base image to which the second image will be attached.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
image2
- The second image to be concatenated to the first one. This image can be resized to match the first image's dimensions if required.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
direction
- Specifies the direction of concatenation ('right', 'down', 'left', 'up'), determining how the second image is attached to the first.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
match_image_size
- A boolean flag indicating whether the second image should be resized to match the first image's dimensions before concatenation.
- Comfy dtype:
BOOLEAN
- Python dtype:
bool
Output types¶
image
- Comfy dtype:
IMAGE
- The resulting image after concatenating the two input images according to the specified direction and size matching option.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class imageConcat:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"direction": (['right','down','left','up',],{"default": 'right'}),
"match_image_size": ("BOOLEAN", {"default": False}),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "concat"
CATEGORY = "EasyUse/Image"
def concat(self, image1, image2, direction, match_image_size):
if match_image_size:
image2 = torch.nn.functional.interpolate(image2, size=(image1.shape[2], image1.shape[3]), mode="bilinear")
if direction == 'right':
row = torch.cat((image1, image2), dim=2)
elif direction == 'down':
row = torch.cat((image1, image2), dim=1)
elif direction == 'left':
row = torch.cat((image2, image1), dim=2)
elif direction == 'up':
row = torch.cat((image2, image1), dim=1)
return (row,)