imageSplitList¶
Documentation¶
- Class name:
easy imageSplitList
- Category:
EasyUse/Image
- Output node:
False
The node 'easy imageSplitList' is designed to split a given image into a list of smaller images, facilitating operations that require individual processing of segments or portions of the original image.
Input types¶
Required¶
images
- The 'images' parameter accepts an image or a batch of images to be split. It plays a crucial role in determining how the original image(s) will be divided into smaller segments.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
Output types¶
images
- Comfy dtype:
IMAGE
- The output 'images' consists of a list of smaller images that have been split from the original input. This allows for individual processing or analysis of each segment.
- Python dtype:
List[torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class imageSplitList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE",)
RETURN_NAMES = ("images", "images", "images",)
FUNCTION = "doit"
CATEGORY = "EasyUse/Image"
def doit(self, images):
length = len(images)
new_images = ([], [], [])
if length % 3 == 0:
for index, img in enumerate(images):
if index % 3 == 0:
new_images[0].append(img)
elif (index+1) % 3 == 0:
new_images[2].append(img)
else:
new_images[1].append(img)
elif length % 2 == 0:
for index, img in enumerate(images):
if index % 2 == 0:
new_images[0].append(img)
else:
new_images[1].append(img)
return new_images