PoseEditor¶
Documentation¶
- Class name:
easy poseEditor
- Category:
EasyUse/Image
- Output node:
False
The poseEditor
node is designed to facilitate the editing of poses within images. It provides a framework for adjusting and manipulating the positioning and orientation of subjects in an image, leveraging a set of predefined input types to customize the editing process.
Input types¶
Required¶
image
image
is the primary input for the pose editing process, representing the image within which poses are to be edited or manipulated. It is essential for defining the starting point of the pose adjustment workflow.- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
Output types¶
image
- Comfy dtype:
IMAGE
- The output
image
is the result of the pose editing process, showcasing the adjusted or manipulated poses within the original image context. - Python dtype:
str
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class poseEditor:
@classmethod
def INPUT_TYPES(self):
temp_dir = folder_paths.get_temp_directory()
if not os.path.isdir(temp_dir):
os.makedirs(temp_dir)
temp_dir = folder_paths.get_temp_directory()
return {"required":
{"image": (sorted(os.listdir(temp_dir)),)},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "output_pose"
CATEGORY = "EasyUse/Image"
def output_pose(self, image):
image_path = os.path.join(folder_paths.get_temp_directory(), image)
# print(f"Create: {image_path}")
i = Image.open(image_path)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
return (image,)
@classmethod
def IS_CHANGED(self, image):
image_path = os.path.join(
folder_paths.get_temp_directory(), image)
# print(f'Change: {image_path}')
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()