IFRNet VFI¶
Documentation¶
- Class name:
IFRNet VFI
- Category:
ComfyUI-Frame-Interpolation/VFI
- Output node:
False
The IFRNet VFI node specializes in video frame interpolation, utilizing deep learning models to predict and generate intermediate frames between existing frames in a video sequence. This process enhances video smoothness and can be used to increase the frame rate of videos.
Input types¶
Required¶
ckpt_name
- Specifies the checkpoint name for the model to be loaded, determining the specific pre-trained weights to use for frame interpolation.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
str
frames
- A tensor containing the sequence of frames to be interpolated. This is the primary input on which the interpolation process is applied.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
clear_cache_after_n_frames
- Controls the cache clearing mechanism to manage memory usage during the interpolation process, by specifying after how many frames the cache should be cleared.
- Comfy dtype:
INT
- Python dtype:
int
multiplier
- Determines the number of intermediate frames to be generated between each pair of original frames, effectively controlling the output video's frame rate.
- Comfy dtype:
INT
- Python dtype:
int
scale_factor
- A scaling factor for adjusting the resolution of the interpolated frames relative to the original frames.
- Comfy dtype:
COMBO[FLOAT]
- Python dtype:
float
Optional¶
optional_interpolation_states
- Optional states that can be used to influence the interpolation process, allowing for customization and optimization based on specific requirements.
- Comfy dtype:
INTERPOLATION_STATES
- Python dtype:
InterpolationStateList
Output types¶
image
- Comfy dtype:
IMAGE
- The output tensor containing the interpolated frames, enhancing the smoothness and frame rate of the input video sequence.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class IFRNet_VFI:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ckpt_name": (CKPT_NAMES, ),
"frames": ("IMAGE", ),
"clear_cache_after_n_frames": ("INT", {"default": 10, "min": 1, "max": 1000}),
"multiplier": ("INT", {"default": 2, "min": 2, "max": 1000}),
"scale_factor": ([0.25, 0.5, 1.0, 2.0, 4.0], {"default": 1.0}),
},
"optional": {
"optional_interpolation_states": ("INTERPOLATION_STATES", )
}
}
RETURN_TYPES = ("IMAGE", )
FUNCTION = "vfi"
CATEGORY = "ComfyUI-Frame-Interpolation/VFI"
def vfi(
self,
ckpt_name: typing.AnyStr,
frames: torch.Tensor,
clear_cache_after_n_frames: typing.SupportsInt = 1,
multiplier: typing.SupportsInt = 2,
scale_factor: typing.SupportsFloat = 1.0,
optional_interpolation_states: InterpolationStateList = None,
**kwargs
):
from .IFRNet_S_arch import IRFNet_S
from .IFRNet_L_arch import IRFNet_L
model_path = load_file_from_github_release(MODEL_TYPE, ckpt_name)
interpolation_model = IRFNet_S() if 'S' in ckpt_name else IRFNet_L()
interpolation_model.load_state_dict(torch.load(model_path))
interpolation_model.eval().to(get_torch_device())
frames = preprocess_frames(frames)
def return_middle_frame(frame_0, frame_1, timestep, model, scale_factor):
return model(frame_0, frame_1, timestep, scale_factor)
args = [interpolation_model, scale_factor]
out = postprocess_frames(
generic_frame_loop(type(self).__name__, frames, clear_cache_after_n_frames, multiplier, return_middle_frame, *args,
interpolation_states=optional_interpolation_states, dtype=torch.float32)
)
return (out,)