📂 IG Load Images¶
Documentation¶
- Class name:
IG Load Images
- Category:
🐓 IG Nodes/IO
- Output node:
False
The IG Load Images From Folder node is designed for efficiently loading multiple images from a specified folder, offering options to limit the number of images loaded, skip a certain number of initial images, and select images at a specified interval. This functionality is crucial for managing and preprocessing large datasets of images for further analysis or processing within a pipeline.
Input types¶
Required¶
folder
- Specifies the directory from which images are to be loaded. This is a required input that determines the source of the images.
- Comfy dtype:
STRING
- Python dtype:
str
Optional¶
image_load_cap
- Limits the number of images to be loaded from the folder. If set to 0, there is no limit.
- Comfy dtype:
INT
- Python dtype:
int
skip_first_images
- Skips a specified number of images from the beginning of the folder. Useful for starting the loading process from a certain point.
- Comfy dtype:
INT
- Python dtype:
int
select_every_nth
- Loads every nth image from the folder, allowing for selective loading of images at regular intervals.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- The loaded images from the specified folder.
- Python dtype:
torch.Tensor
- Comfy dtype:
mask
- Comfy dtype:
MASK
- The masks associated with the loaded images, if available.
- Python dtype:
torch.Tensor
- Comfy dtype:
int
- Comfy dtype:
INT
- The total number of images loaded from the folder.
- Python dtype:
int
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class IG_LoadImagesFromFolder:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"folder": ("STRING", {"forceInput": True}),
},
"optional": {
"image_load_cap": ("INT", {"default": 0, "min": 0, "step": 1}),
"skip_first_images": ("INT", {"default": 0, "min": 0, "step": 1}),
"select_every_nth": ("INT", {"default": 1, "min": 1, "step": 1}),
}
}
RETURN_TYPES = ("IMAGE", "MASK", "INT")
FUNCTION = "main"
CATEGORY = TREE_IO
def main(self, folder: str, **kwargs):
return load_images(folder, **kwargs)
@classmethod
def IS_CHANGED(s, folder: str, **kwargs):
return is_changed_load_images(folder, **kwargs)
# @classmethod
# def VALIDATE_INPUTS(s, folder: str, **kwargs):
# return validate_load_images(folder, **kwargs)