Game Of Life¶
Documentation¶
- Class name:
GameOfLife
- Category:
image/filters
- Output node:
False
The GameOfLife node simulates the Conway's Game of Life, a cellular automaton, over a specified number of steps. It evolves the state of a grid based on the rules of survival, death, and birth determined by the neighboring cells.
Input types¶
Required¶
width
- Specifies the width of the grid for the simulation, affecting the horizontal size of the cellular automaton.
- Comfy dtype:
INT
- Python dtype:
int
height
- Specifies the height of the grid for the simulation, affecting the vertical size of the cellular automaton.
- Comfy dtype:
INT
- Python dtype:
int
cell_size
- Determines the size of each cell in the grid, influencing the resolution of the simulation.
- Comfy dtype:
INT
- Python dtype:
int
seed
- A seed value for random number generation, ensuring reproducibility of the grid's initial state.
- Comfy dtype:
INT
- Python dtype:
int
threshold
- A threshold value to determine the initial state of each cell in the grid, based on random generation.
- Comfy dtype:
FLOAT
- Python dtype:
float
steps
- The number of steps to simulate, dictating the duration of the Game of Life evolution.
- Comfy dtype:
INT
- Python dtype:
int
Optional¶
optional_start
- An optional parameter to specify the initial state of the grid, allowing for custom starting configurations.
- Comfy dtype:
MASK
- Python dtype:
torch.Tensor
Output types¶
image
- Comfy dtype:
IMAGE
- The final state of the grid after the specified number of steps, represented as an image.
- Python dtype:
torch.Tensor
- Comfy dtype:
mask
- Comfy dtype:
MASK
- A binary mask indicating the cells that changed state in the last step of the simulation.
- Python dtype:
torch.Tensor
- Comfy dtype:
off
- Comfy dtype:
MASK
- A mask indicating cells that turned off in the last step of the simulation.
- Python dtype:
torch.Tensor
- Comfy dtype:
on
- Comfy dtype:
MASK
- A mask indicating cells that turned on in the last step of the simulation.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class GameOfLife:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"width": ("INT", { "default": 32, "min": 8, "max": 1024, "step": 1}),
"height": ("INT", { "default": 32, "min": 8, "max": 1024, "step": 1}),
"cell_size": ("INT", { "default": 16, "min": 8, "max": 1024, "step": 8}),
"seed": ("INT", { "default": 0, "min": 0, "max": 0xffffffffffffffff, "step": 1}),
"threshold": ("FLOAT", { "default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
"steps": ("INT", { "default": 64, "min": 1, "max": 999999, "step": 1}),
},
"optional": {
"optional_start": ("MASK", ),
},
}
RETURN_TYPES = ("IMAGE", "MASK", "MASK", "MASK")
RETURN_NAMES = ("image", "mask", "off", "on")
FUNCTION = "game"
CATEGORY = "image/filters"
def game(self, width, height, cell_size, seed, threshold, steps, optional_start=None):
F = torch.nn.functional
if optional_start is None:
# base random initialization
torch.manual_seed(seed)
grid = torch.rand(1, 1, height, width)
else:
grid = optional_start[0].unsqueeze(0).unsqueeze(0)
grid = F.interpolate(grid, size=(height, width))
grid = (grid > threshold).type(torch.uint8)
empty = torch.zeros(1, 1, height, width, dtype=torch.uint8)
# neighbor convolution kernel
kernel = torch.ones(1, 1, 3, 3, dtype=torch.uint8)
kernel[0, 0, 1, 1] = 0
game_states = [[], [], []] # grid, turn_off, turn_on
game_states[0].append(grid.detach().clone())
game_states[1].append(empty.detach().clone())
game_states[2].append(empty.detach().clone())
for step in range(steps - 1):
new_state = grid.detach().clone()
neighbors = F.conv2d(F.pad(new_state, pad=(1, 1, 1, 1), mode="circular"), kernel) #, padding="same")
# If a cell is ON and has fewer than two neighbors that are ON, it turns OFF
new_state[(new_state == 1) == (neighbors < 2)] = 0
# If a cell is ON and has either two or three neighbors that are ON, it remains ON.
# If a cell is ON and has more than three neighbors that are ON, it turns OFF.
new_state[(new_state == 1) == (neighbors > 3)] = 0
# If a cell is OFF and has exactly three neighbors that are ON, it turns ON.
new_state[(new_state == 0) == (neighbors == 3)] = 1
turn_off = ((grid - new_state) == 1).type(torch.uint8)
turn_on = ((new_state - grid) == 1).type(torch.uint8)
game_states[0].append(new_state.detach().clone())
game_states[1].append(turn_off.detach().clone())
game_states[2].append(turn_on.detach().clone())
grid = new_state
def postprocess(tensorlist, to_image=False):
game_anim = torch.cat(tensorlist, dim=0).type(torch.float32)
game_anim = F.interpolate(game_anim, size=(height * cell_size, width * cell_size))
game_anim = torch.squeeze(game_anim, dim=1) # BCHW -> BHW
if to_image:
game_anim = game_anim.unsqueeze(-1).repeat(1,1,1,3) # BHWC
return game_anim
image = postprocess(game_states[0], to_image=True)
mask = postprocess(game_states[0])
off = postprocess(game_states[1])
on = postprocess(game_states[2])
return (image, mask, off, on)