ImpactIfNone¶
Documentation¶
- Class name:
ImpactIfNone
- Category:
ImpactPack/Logic
- Output node:
False
The ImpactIfNone node is designed to evaluate whether a given input is None and conditionally execute logic based on that evaluation. It abstracts the process of null-checking, allowing for streamlined decision-making in data flows where the presence or absence of data dictates subsequent actions.
Input types¶
Required¶
Optional¶
signal
- The 'signal' parameter is an optional input that the node can process alongside 'any_input' to determine the flow of logic based on the presence of data.
- Comfy dtype:
*
- Python dtype:
Any
any_input
- The 'any_input' parameter is evaluated to check if it is None. Its presence or absence influences the node's decision-making process and the output generated.
- Comfy dtype:
*
- Python dtype:
Any
Output types¶
signal_opt
- Comfy dtype:
*
- The 'signal_opt' output returns the 'signal' input if 'any_input' is not None, facilitating conditional logic flows.
- Python dtype:
Any
- Comfy dtype:
bool
- Comfy dtype:
BOOLEAN
- The 'bool' output indicates whether 'any_input' was None (False) or not (True), providing a boolean flag for further decision-making.
- Python dtype:
bool
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ImpactIfNone:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {},
"optional": {"signal": (any_typ,), "any_input": (any_typ,), }
}
RETURN_TYPES = (any_typ, "BOOLEAN")
RETURN_NAMES = ("signal_opt", "bool")
FUNCTION = "doit"
CATEGORY = "ImpactPack/Logic"
def doit(self, signal=None, any_input=None):
if any_input is None:
return (signal, False, )
else:
return (signal, True, )