Impact Scheduler Adapter¶
Documentation¶
- Class name:
ImpactSchedulerAdapter
- Category:
ImpactPack/Util
- Output node:
False
The ImpactSchedulerAdapter node is designed to adapt and select scheduling strategies for various tasks, allowing for dynamic adjustment of scheduling based on specific conditions or preferences.
Input types¶
Required¶
scheduler
- Specifies the primary scheduler to be used, with an option to default to a pre-defined input if no specific scheduler is provided.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
comfy.samplers.KSampler.SCHEDULERS
extra_scheduler
- Allows for the specification of an additional scheduler, offering options such as 'None', 'AYS SDXL', 'AYS SD1', 'AYS SVD', 'GITS[coeff=1.2]', to override the primary scheduler if needed.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
List[str]
Output types¶
scheduler
- Comfy dtype:
COMBO[STRING]
- Outputs the selected scheduler, which could either be the primary scheduler or an overridden scheduler specified by the 'extra_scheduler' input.
- Python dtype:
Tuple[str]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ImpactSchedulerAdapter:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"defaultInput": True, }),
"extra_scheduler": (['None', 'AYS SDXL', 'AYS SD1', 'AYS SVD', 'GITS[coeff=1.2]'],),
}}
CATEGORY = "ImpactPack/Util"
RETURN_TYPES = (core.SCHEDULERS,)
RETURN_NAMES = ("scheduler",)
FUNCTION = "doit"
def doit(self, scheduler, extra_scheduler):
if extra_scheduler != 'None':
return (extra_scheduler,)
return (scheduler,)