Masks to Mask List¶
Documentation¶
- Class name:
MasksToMaskList
- Category:
ImpactPack/Operation
- Output node:
False
The MasksToMaskList node is designed to transform a collection of individual masks into a list of masks, applying a 3D mask transformation to each mask in the process. This operation is essential for preparing mask data for further processing or analysis within a pipeline that requires masks in a standardized format.
Input types¶
Required¶
masks
- The 'masks' parameter represents the collection of masks to be transformed. It is crucial for the node's operation as it provides the raw data that will be processed into a standardized list format.
- Comfy dtype:
MASK
- Python dtype:
Optional[List[torch.Tensor]]
Output types¶
mask
- Comfy dtype:
MASK
- The output is a list of masks, each transformed into a 3D format, ready for further processing or analysis.
- Python dtype:
List[torch.Tensor]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class MasksToMaskList:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"masks": ("MASK", ),
}
}
RETURN_TYPES = ("MASK", )
OUTPUT_IS_LIST = (True, )
FUNCTION = "doit"
CATEGORY = "ImpactPack/Operation"
def doit(self, masks):
if masks is None:
empty_mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
return ([empty_mask], )
res = []
for mask in masks:
res.append(mask)
print(f"mask len: {len(res)}")
res = [make_3d_mask(x) for x in res]
return (res, )