ONNXDetectorProvider¶
Documentation¶
- Class name:
ONNXDetectorProvider
- Category:
ImpactPack
- Output node:
False
The ONNXDetectorProvider node is designed to load and provide access to ONNX models for object detection. It serves as a bridge between the ONNX model files and the detection functionality, enabling the use of pre-trained ONNX models for detecting objects within images.
Input types¶
Required¶
model_name
- Specifies the name of the ONNX model to be loaded. This parameter is crucial for identifying and accessing the correct model file for object detection.
- Comfy dtype:
COMBO[STRING]
- Python dtype:
List[str]
Output types¶
bbox_detector
- Comfy dtype:
BBOX_DETECTOR
- Provides an object detector initialized with the specified ONNX model. This detector is capable of identifying bounding boxes around objects within images.
- Python dtype:
core.ONNXDetector
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class ONNXDetectorProvider:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model_name": (folder_paths.get_filename_list("onnx"), )}}
RETURN_TYPES = ("BBOX_DETECTOR", )
FUNCTION = "load_onnx"
CATEGORY = "ImpactPack"
def load_onnx(self, model_name):
model = folder_paths.get_full_path("onnx", model_name)
return (core.ONNXDetector(model), )