[Inference.Core] Standard Lineart¶
Documentation¶
- Class name:
Inference_Core_LineartStandardPreprocessor
- Category:
ControlNet Preprocessors/Line Extractors
- Output node:
False
The Inference_Core_LineartStandardPreprocessor node is designed to preprocess images for line extraction, applying Gaussian blurring and intensity thresholding to enhance lineart features before further processing.
Input types¶
Required¶
image
- The input image to be processed for line extraction, serving as the primary data for the node's operations.
- Comfy dtype:
IMAGE
- Python dtype:
torch.Tensor
Optional¶
guassian_sigma
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
intensity_threshold
- Determines the threshold for intensity differentiation, aiding in the distinction of lineart from the background by setting a cutoff intensity value.
- Comfy dtype:
INT
- Python dtype:
int
resolution
- Specifies the resolution at which the image processing should be executed, affecting the detail level of the output lineart.
- Comfy dtype:
INT
- Python dtype:
int
Output types¶
image
- Comfy dtype:
IMAGE
- Produces an image with enhanced lineart features, ready for further processing or analysis.
- Python dtype:
torch.Tensor
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class Lineart_Standard_Preprocessor:
@classmethod
def INPUT_TYPES(s):
return create_node_input_types(
guassian_sigma=("FLOAT", {"default": 6.0, "min": 0.0, "max": 100.0}),
intensity_threshold=("INT", {"default": 8, "min": 0, "max": 16})
)
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "ControlNet Preprocessors/Line Extractors"
def execute(self, image, guassian_sigma, intensity_threshold, resolution=512, **kwargs):
from controlnet_aux.lineart_standard import LineartStandardDetector
return (common_annotator_call(LineartStandardDetector(), image, guassian_sigma=guassian_sigma, intensity_threshold=intensity_threshold, resolution=resolution), )