Inference_Core_ModelMergeSDXLDetailedTransformers¶
Documentation¶
- Class name:
Inference_Core_ModelMergeSDXLDetailedTransformers
- Category:
advanced/model_merging
- Output node:
False
This node specializes in merging two SDXL transformer models, incorporating detailed configuration options for transformer blocks within the model architecture. It enables precise adjustments and fine-tuning of transformer parameters across various sections of the input, middle, and output blocks, facilitating enhanced model integration and performance optimization.
Input types¶
Required¶
model1
- One of the models to be merged, serving as a primary component in the merging process.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
model2
- The second model to be merged, serving as the secondary component in the merging process.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
time_embed.
- A parameter for adjusting the time embedding layers' weights in the merging process, affecting the temporal dynamics of the merged model.
- Comfy dtype:
FLOAT
- Python dtype:
float
label_emb.
- A parameter for adjusting the label embedding layers' weights in the merging process, influencing how labels are represented in the merged model.
- Comfy dtype:
FLOAT
- Python dtype:
float
input_blocks.i.j.
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.norm1
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn1.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn1.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn1.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn1.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.ff.net
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.norm2
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn2.to_q
- Adjusts the weights for the query transformation in the second attention mechanism of transformer blocks within input blocks. The indices i, j, and k represent the input block number, the sub-block within the input block (if applicable), and the transformer block number, respectively, allowing for precise control over specific components of the model architecture.
- Comfy dtype:
FLOAT
- Python dtype:
float
input_blocks.i.j.transformer_blocks.k.attn2.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn2.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.attn2.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
input_blocks.i.j.transformer_blocks.k.norm3
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.norm1
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn1.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn1.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn1.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn1.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.ff.net
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.norm2
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn2.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn2.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn2.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.attn2.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
middle_block.i.transformer_blocks.j.norm3
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.norm1
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn1.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn1.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn1.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn1.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.ff.net
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.norm2
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn2.to_q
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn2.to_k
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn2.to_v
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.attn2.to_out
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
output_blocks.i.j.transformer_blocks.k.norm3
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
out.
- unknown
- Comfy dtype:
FLOAT
- Python dtype:
unknown
Output types¶
model
- Comfy dtype:
MODEL
- The merged model, optimized through detailed transformer parameter adjustments for improved performance and integration.
- Python dtype:
torch.nn.Module
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ModelMergeSDXLDetailedTransformers(comfy_extras.nodes_model_merging.ModelMergeBlocks):
@classmethod
def INPUT_TYPES(s):
arg_dict = { "model1": ("MODEL",),
"model2": ("MODEL",)}
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
arg_dict["time_embed."] = argument
arg_dict["label_emb."] = argument
transformers = {4: 2, 5:2, 7:10, 8:10}
transformers_args = ["norm1", "attn1.to_q", "attn1.to_k", "attn1.to_v", "attn1.to_out", "ff.net", "norm2", "attn2.to_q", "attn2.to_k", "attn2.to_v", "attn2.to_out", "norm3"]
for i in range(9):
arg_dict["input_blocks.{}.0.".format(i)] = argument
if i in transformers:
arg_dict["input_blocks.{}.1.".format(i)] = argument
for j in range(transformers[i]):
for x in transformers_args:
arg_dict["input_blocks.{}.1.transformer_blocks.{}.{}".format(i, j, x)] = argument
for i in range(3):
arg_dict["middle_block.{}.".format(i)] = argument
if i == 1:
for j in range(10):
for x in transformers_args:
arg_dict["middle_block.{}.transformer_blocks.{}.{}".format(i, j, x)] = argument
transformers = {3:2, 4: 2, 5:2, 6:10, 7:10, 8:10}
for i in range(9):
arg_dict["output_blocks.{}.0.".format(i)] = argument
t = 8 - i
if t in transformers:
arg_dict["output_blocks.{}.1.".format(i)] = argument
for j in range(transformers[t]):
for x in transformers_args:
arg_dict["output_blocks.{}.1.transformer_blocks.{}.{}".format(i, j, x)] = argument
arg_dict["out."] = argument
return {"required": arg_dict}