Inference_Core_ModelSamplerTonemapNoiseTest¶
Documentation¶
- Class name:
Inference_Core_ModelSamplerTonemapNoiseTest
- Category:
custom_node_experiments
- Output node:
False
This node applies a tonemapping technique to modify the noise prediction vector magnitude in a model's sampler, aiming to enhance image generation quality by adjusting the contrast and brightness based on the Reinhard tonemapping algorithm. It allows for dynamic adjustment of the effect through a multiplier, facilitating experimentation with different levels of tonemapping intensity.
Input types¶
Required¶
model
- The model to which the tonemapping technique will be applied. This is crucial for modifying the model's internal sampler configuration to achieve the desired image generation enhancements.
- Comfy dtype:
MODEL
- Python dtype:
torch.nn.Module
multiplier
- A scalar value used to adjust the intensity of the tonemapping effect applied to the noise prediction vector magnitude, allowing for fine-tuning of the image's contrast and brightness.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
model
- Comfy dtype:
MODEL
- The modified model with an updated sampler configuration that incorporates the tonemapping technique, aimed at improving image generation quality.
- Python dtype:
torch.nn.Module
- Comfy dtype:
Usage tips¶
- Infra type:
GPU
- Common nodes: unknown
Source code¶
class ModelSamplerTonemapNoiseTest:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "custom_node_experiments"
def patch(self, model, multiplier):
def sampler_tonemap_reinhard(args):
cond = args["cond"]
uncond = args["uncond"]
cond_scale = args["cond_scale"]
noise_pred = (cond - uncond)
noise_pred_vector_magnitude = (torch.linalg.vector_norm(noise_pred, dim=(1)) + 0.0000000001)[:,None]
noise_pred /= noise_pred_vector_magnitude
mean = torch.mean(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)
std = torch.std(noise_pred_vector_magnitude, dim=(1,2,3), keepdim=True)
top = (std * 3 + mean) * multiplier
#reinhard
noise_pred_vector_magnitude *= (1.0 / top)
new_magnitude = noise_pred_vector_magnitude / (noise_pred_vector_magnitude + 1.0)
new_magnitude *= top
return uncond + noise_pred * new_magnitude * cond_scale
m = model.clone()
m.set_model_sampler_cfg_function(sampler_tonemap_reinhard)
return (m, )