Skip to content

Inference_Core_RescaleClassifierFreeGuidanceTest

Documentation

  • Class name: Inference_Core_RescaleClassifierFreeGuidanceTest
  • Category: custom_node_experiments
  • Output node: False

This node applies a custom patch to a given model, enhancing its inference capabilities by rescaling the classifier-free guidance process. It adjusts the balance between conditioned and unconditioned generation through a specified multiplier, aiming to improve the model's output quality.

Input types

Required

  • model
    • The model to be patched, which will have its classifier-free guidance process rescaled for improved inference performance.
    • Comfy dtype: MODEL
    • Python dtype: torch.nn.Module
  • multiplier
    • A scalar value that adjusts the balance between conditioned and unconditioned generation, influencing the final output quality of the model.
    • Comfy dtype: FLOAT
    • Python dtype: float

Output types

  • model
    • Comfy dtype: MODEL
    • The patched model with an adjusted classifier-free guidance process for enhanced inference performance.
    • Python dtype: torch.nn.Module

Usage tips

  • Infra type: GPU
  • Common nodes: unknown

Source code

class RescaleClassifierFreeGuidance:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "custom_node_experiments"

    def patch(self, model, multiplier):

        def rescale_cfg(args):
            cond = args["cond"]
            uncond = args["uncond"]
            cond_scale = args["cond_scale"]

            x_cfg = uncond + cond_scale * (cond - uncond)
            ro_pos = torch.std(cond, dim=(1,2,3), keepdim=True)
            ro_cfg = torch.std(x_cfg, dim=(1,2,3), keepdim=True)

            x_rescaled = x_cfg * (ro_pos / ro_cfg)
            x_final = multiplier * x_rescaled + (1.0 - multiplier) * x_cfg

            return x_final

        m = model.clone()
        m.set_model_sampler_cfg_function(rescale_cfg)
        return (m, )