Bind [ImageList, PromptList] (Inspire)¶
Documentation¶
- Class name:
BindImageListPromptList __Inspire
- Category:
InspirePack/Prompt
- Output node:
False
The BindImageListPromptList node is designed to integrate image lists with corresponding prompt lists, facilitating the creation of enriched visual-textual datasets. This node aims to streamline the process of binding images with their respective prompts, enabling more efficient and organized handling of visual and textual data for creative or analytical purposes.
Input types¶
Required¶
images
- The 'images' parameter accepts a list of images to be bound with prompts, serving as the visual component of the dataset.
- Comfy dtype:
IMAGE
- Python dtype:
List[torch.Tensor]
zipped_prompts
- The 'zipped_prompts' parameter takes a list of prompts (zipped format) to be associated with the images, acting as the textual component of the dataset.
- Comfy dtype:
ZIPPED_PROMPT
- Python dtype:
List[Tuple[str, str, str]]
default_positive
- The 'default_positive' parameter specifies a default positive prompt to be used when the number of prompts is less than the number of images.
- Comfy dtype:
STRING
- Python dtype:
str
default_negative
- The 'default_negative' parameter specifies a default negative prompt to be used in similar circumstances as the default positive, ensuring coverage for all images.
- Comfy dtype:
STRING
- Python dtype:
str
Output types¶
image
- Comfy dtype:
IMAGE
- Returns the original list of images, maintaining the visual data integrity.
- Python dtype:
List[torch.Tensor]
- Comfy dtype:
positive
- Comfy dtype:
STRING
- Returns a list of positive prompts, each corresponding to an image, enriching the dataset with positive textual annotations.
- Python dtype:
List[str]
- Comfy dtype:
negative
- Comfy dtype:
STRING
- Returns a list of negative prompts, complementing the positive prompts by providing contrasting textual annotations for each image.
- Python dtype:
List[str]
- Comfy dtype:
prompt_label
- Comfy dtype:
STRING
- Returns a list of labels for the prompts, offering additional context or categorization for the bound image-prompt pairs.
- Python dtype:
List[str]
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class BindImageListPromptList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"zipped_prompts": ("ZIPPED_PROMPT",),
"default_positive": ("STRING", {"multiline": True, "placeholder": "default positive"}),
"default_negative": ("STRING", {"multiline": True, "placeholder": "default negative"}),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("IMAGE", "STRING", "STRING", "STRING")
RETURN_NAMES = ("image", "positive", "negative", "prompt_label")
OUTPUT_IS_LIST = (True, True, True,)
FUNCTION = "doit"
CATEGORY = "InspirePack/Prompt"
def doit(self, images, zipped_prompts, default_positive, default_negative):
positives = []
negatives = []
prompt_labels = []
if len(images) < len(zipped_prompts):
zipped_prompts = zipped_prompts[:len(images)]
elif len(images) > len(zipped_prompts):
lack = len(images) - len(zipped_prompts)
default_prompt = (default_positive[0], default_negative[0], "default")
zipped_prompts = zipped_prompts[:]
for i in range(lack):
zipped_prompts.append(default_prompt)
for prompt in zipped_prompts:
a, b, c = prompt
positives.append(a)
negatives.append(b)
prompt_labels.append(c)
return (images, positives, negatives, prompt_labels)