Canny Preprocessor Provider (SEGS)¶
Documentation¶
- Class name:
Canny_Preprocessor_Provider_for_SEGS __Inspire
- Category:
InspirePack/SEGS/ControlNet
- Output node:
False
This node provides a Canny edge detection preprocessor for SEGS (Semantic Edge Guided Synthesis), aimed at enhancing image edges for better segmentation and synthesis outcomes.
Input types¶
Required¶
low_threshold
- Specifies the lower bound for the hysteresis thresholding step in the Canny edge detection algorithm, influencing the detection of weaker edges.
- Comfy dtype:
FLOAT
- Python dtype:
float
high_threshold
- Defines the upper bound for the hysteresis thresholding step, determining the detection of the most pronounced edges.
- Comfy dtype:
FLOAT
- Python dtype:
float
Output types¶
segs_preprocessor
- Comfy dtype:
SEGS_PREPROCESSOR
- Outputs a preprocessor object configured for Canny edge detection, ready to be used in SEGS workflows.
- Python dtype:
Canny_Preprocessor_wrapper
- Comfy dtype:
Usage tips¶
- Infra type:
CPU
- Common nodes: unknown
Source code¶
class Canny_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}),
"high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01})
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, low_threshold, high_threshold):
obj = Canny_Preprocessor_wrapper(low_threshold, high_threshold)
return (obj, )